Wiener - Type Invariants of Some Graph Operations ∗
نویسندگان
چکیده
Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, λ a real number, and Wλ(G) = ∑ k≥1 d(G, k)kλ. Wλ(G) is called the Wiener-type invariant of G associated to real number λ. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyperWiener index and Tratch-Stankevich-Zefirov index are calculated. Some upper and lower bounds are also presented.
منابع مشابه
Applications of some Graph Operations in Computing some Invariants of Chemical Graphs
In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملOn Powers of Some Graph Operations
Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.
متن کاملThe Wiener Related Indices of Some Graph Operations
The Wiener index of a connected graph G, denoted by W(G) , is defined as ∑ ( , ) , ∈ ( ) .Similarly, hyper-Wiener index of a connected graph G,denoted by WW(G), is defined as ( ) + ∑ ( , ) , ∈ ( ) .In this paper, we present the explicit formulae for the Wiener, hyper-Wiener and reverse Wiener indices of some graph operations. Using the results obtained here, the exact formulae for Wiener, hyper...
متن کامل